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When a container of fluid of arbitrary shape is heated from below and the 
temperature gradient exceeds a critical value (92;) the conduction solution with 
no motion becomes unstable and is replaced by convection. The convection may 
have two forms: one with ‘upflow’ at  the centre of the container and one with 
‘downflow’ there. Here we study the stability of the two forms of convection. 
Both forms are here shown to be stable to infinitesimal disturbances. When the 
viscosity varies with the temperature or the conduction profile is not linear, etc., 
the steady convection can be driven with finite amplitudes 181 at subcritical 
values of the temperature contrast (g2 < 922). This subcritical convection is 
stable when the convection is strong (161 > > 0) but is unstable when the 
convection is feeble (1.1 < ]€*I). Hence, when 161 > and 92 < 9: either 
‘upflow’ or ‘downflow’, but not both, is stable. When 92 > 9%’:) however, both 
the ‘upflow) and the ‘downflow) can be stable. This contrasts with the corre- 
sponding situation which is known to hold when the container is an unbounded 
layer. In  the layer there is only one stable form of convection. The difference 
between the bounded domain with two forms of convection and the layer with 
just one stable form is traced to the mathematical property of simplicity of 
92 when viewed as an eigenvalue of the linear stability problem for the conduc- 
tion solution. It is argued that $2: is a simple eigenvalue in most domains, but in 
the layer 92; can have infinite multiplicity. The explanation of the transition 
from the bounded domain to the unbounded layer is sought (1) in the chaotic 
conditions which frequently prevail at  the edges of a ‘bounded’ layer and (2) in 
the fact that in the layer of large horizontal extent, the higher eigenvalues 
crowd 9%’;. In the course of the explanation, a new exact solution of the linear 
B6nard problem in a cylinder with a rigid side wall and a stress-free top and 
bottom is derived. 

1. Introduction 
It is well known that the motionless state of pure heat conduction is stable to  

small disturbances when 9%’ < gCj where gC is a critical value of linear stability 
theory. There are many problems which allow stable convection as well as 
stable conduction to exist when 9 < gC. In  these problems the appearance of 
conduction or convection at 9%’ < BC cannot be decided by linear theory. (We 
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need to know the ‘domains of attraction’ of the linearly stable solutions.) A class 
of problems of this type arises in the study of generalized conduction solutions of 
the generalized Oberbeck-Boussinesq equations.? A Conduction solution is a 
motionless solution of the governing equations. All such solutions necessarily 
have parallel gravity and temperature gradient fields. The conduction solution is 
called ‘generalized’ if the thermal diffusivity is temperature dependent, if the 
external conditions vary with time or if there are heat sources in the fluid. The 
generalizations of the 0-B equations to be kept in mind allow thermal properties 
of the fluid and the derivative of the density with respect to temperature to vary 
with the temperature. But we shall not lose generality if, for definiteness, we 
consider a fluid with a temperature-sensitive viscosity in a container heated 
from below and by heat sources. 

Let 5 be a heat source parameter (equation (2.3)), let 5 be a viscosity parameter 
(equation (2 .2) )  and let E be the amplitude of the steady convection (equation 
( 2 . 6 d ) ) .  To drive convection with norm 181, one needs to impose a definite 
(dimensionless) temperature difference g ( e ,  5,C) across the container, but more 
than one convective solution can often be found for a given value of 9 (see figure 
1). The convective solutions with small branch off the conduction solution 
at the value gC = a(0, g, 5)  and are sometimes called ‘branching’ solutions. 
For 93 < gC, the conduction solution is stable, and when 9 > gC, the conduction 
solution loses stability. 

The number of feeble convective solutions ( E  near 0 )  is very much related to the 
number of linearly independent eigenfunctions which belong to the eigenvalue 

7 By 0-B equations I have in mind that generalization of the incompressible Navier- 
Stokes equations which is generally attributed to Boussinesq (1903). It is known, through 
the work of Mihaljan (1962), that the approximations used by Boussinesq were actually of 
earlier origin and were used by Oberbeck (1891) in meteorological studies of the Hadley 
r6gime. But Oberbeck’s first use of these equations, in 1879, is more substantial than the 
later (1891) application, and the equations which he sets out in the earlier study are just 
exactly the ones generally attributed to Boussinesq. In some respects, Oberbeck’s (1879) 
treatment of these equations is superior to Boussinesq’s; for example, Boussinesq obtains 
the simplified equations as a consequence of a list of assertions, but in Oberbeck’s work 
the equations arise as the lowest-order terms of a power series development in the 
expansion coefficient u. And included in Oberbeck’s fundamental paper is an application 
of both the convection analysis and the series ordering by which they are derived to 
the problem of convection induced by differential heating of stationary concentric 
spheres. 

It cannot be said that the Oberbeck study went unnoticed, for in 1881, Lorenz published 
a celebrated study of free convection along a heated flat plate in which he used Oberbeck’s 
equations to derive a formula relating, for the first time, the Nusselt number to given flow 
data. Jakob (1949, p. 443) calls this formula “...a triumph of classical theory, having 
revealed for the first time the complex nature of the coefficient of heat transfer by free 
convection. ..in a form which has been proved valid with good approximation through 
more than half a century”. The ‘Rayleigh’ number also appears for the first time in the 
Lorenz study (it is called u there and &?* here). 

The attribution of the equations to Boussinesq is probably due to Rayleigh (1916), who 
may have been unaware of the earlier papers, though it cannot be said that these earlier 
papers are in any sense obscure. Such was the prestige of Rayleigh, especially in England, 
that this attribution stuck, despite the fact that the engineering heat transfer literature 
makes use of the ‘Boussinesq’ equations as if they were created at  t = 0, without reference 
to Boussinesq but with a properly humble deference to the important results of Lorenz. 
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Bc. The multiplicity of 9c is the number of independent eigensolutions. When 
there is only one eigenfunction, the eigenvalue (of multiplicity one) is called 
simple. In  the fluid layer the multiplicity of Wc can be very large, even infinite.t 
By requiring symmetry properties of solutions (e.g. Yudovich 1966), one can 
make gC simple. But even when gC is simple, there are still two convection 
solutions. On one solution the fluid rises at  the ‘centre’ and on the other solution 
the fluid sinks at the ‘centre ’. 

Both the rising and falling solution can be constructed formally as series in 
E (Malkus & Veronis 1954) and also in 6 and 5 (Busse 1962). The formal series 
converge and solve the problem (Fife & Joseph 1969, Fife 1970). We shall 
express the steady convection as Taylor series 

u = s(u,+sul+e2U2+ ...), (1.la) 

0 = s(8,+c8,+e282+ ...), ( 1 . l b )  

and W = Wc+eB?l+E%?2+..., ( l . l c )  

etc. The linear stability problem for the steady convection will also be expressed 
in series (4.1, 4.5b) .  Here the coefficients are Taylor coefficients, e.g. 

8, = (1/2!)a28/ae21,=,, 

and u and 8 are the velocity and temperature of a disturbance of the conduction 
solution. The functions (uo, 0,) have BC as their eigenvalue and since sc is to be 
assumed simple, these functions are fixed to within an arbitrary multiplicative 
constant. The magnitude of the multiplicative constant is fixed by condition 
(2.6d), which defines e2. The sign of the constant is not fixed by (2.6d) and 
(u,, 6,) and ( - u,, - 60) are both eigenfunctions of gC. If (eu,, €0,) gives a rising 
motion at a point, ( - eu,, - €8,) gives a sinking motion. It is convenient to think 
of the functions (uo, 0,) as given. Then, the two motions are associated with the 
sign of E .  For example, we could choose the sign of (u,, 0,) so that e > 0 corre- 
sponds to rising motion and E < 0 to sinking motion at the centre. 

When E2+c2 > 0 subcritical convection (9 < Wc) is possible. Suppose, for 
definiteness, that this subcritical motion has e > 0 and is associated with the 
rising motion. As E is increased 2 ( e )  decreases to a minimum, say B?(E*), and then 
increases again. For e < 0 the convection is supercritical (W(E) > Wc). Therefore 
the convection can be supercritical when e < 0 or 8 > e* > 0. Rising and falling 
motion can occur when W > gC but only rising motion (e > 0)  can occur when 
92 < gC (see figure 1). 

We will consider the stability of these different forms of convection. In  the 
fluid layer the only stable form of convection has e > e+. Here 9 ( e )  increases with 

t As is well known (Pellew & Southwell 1940) the hear  stability problem for 0-B 
convection allows a ‘so-called’ plan form separation of variables of the form f ( z ) g ( z ,  y) 
where g is an eigenfunction of the Laplacian in the plane with wave-number u2, i.e. 
Azg+agg  = 0. There are infinitely many such solutions even when a2 is &xed. If u: is the 
wave-number associated with the eigenvalue w,, all the eigensolutions are of the form 
f(z)g,(x, y), A z g , + a ~ g ,  = 0 and theso are infinite in number. 
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260 D. D. Joseph 

e.  Moreover, the stable solution has a hexagonal plan form.? It follows that 
stability determines the sign of the motion in fluid layers.$ 

In  contrast, in bounded regions both the rising and falling motion are not; only 
possible - they are both stable to small disturbances. 

Since in the layer only one of the two branching solutions is stable, the sign of 
B for the stable solution, that is, the sign of the motion, is uniquely determined. 
This stability consideration is important in, say, the generally accepted view that 
the direction of flow in cellular convection is determined by the variation of the 
viscosity with the temperature, and is such that the motion at  the centre of the 
cell is in the direction of increasing kinematic viscosity (the subcritical branch). 
This view was first advanced by Graham (1933). It has been strengthened by 
Tippelskirch’s (1956) experiment using liquid sulphur (the viscosity of which 
increases sharply with temperature in the range 153-190 “C while decreasing 
with temperature everywhere else) in which flow reversal was noted when the 
temperature exceeded 153 “C. 

In  bounded domains both (upflow ’ and ( downflow ’ are possible and prediction 
of realizability for only one branch of convection does not apply. It is, therefore, 
an open question as to what should be anticipated in laboratory experiments. 
Some frequently cited experimental evidence for the realizability of just one 
form of convection is not completely convincing. Graham asserts without 
documentation the existence of only upflow in liquids, and he seems to have made 
no attempt to reach a second solution in his experiments with gases. Tippel- 
skirch’s experiments do not establish the non-existence of two stable forms of 
convection either. The flow reversal which is noted in this experiment would be 

t Stability here is defined with respect to infinitesimal disturbances which are almost 
periodic (AP) in the variable 2, g of the horizontal plane. Almost periodic functions are a 
considerable genoralization of periodic functions which leave intact the property of 
completeness of the ‘Fourier’ series. The AP functions are uniform limits of polynomials of 
exponentials of the form (Bohr 1932) 

N 

- N  
CI c9I exp { i ( % X + P , V ) I .  (1.2) 

Such polynomials are eigenfunctions for Laplace’s operator in the plane with eigenvalue 
uf+P: = a2. These eigenfunctions of the membrane equation then form the intersection 
of the plan-form functions (cf. footnote p. 259) and the AP functions. Not every plan-form 
function is AP. For example, the Bessel function J,(hr) has A,J,  + AZJ, = 0 but is not AP. 
In  fact, no function in L,(z, y) could be AP. 

The stability studies of Schluter, Lortz & Busse (1965), Lortz (1961), Busse (1962) and 
Krishnamurti (1968) are to be understood in terms of the mathematics of the AP dis- 
turbances. At lowest order, the intersection of tho AP functions and plan-form functions is 
considered. In  generating the non-linear solution, the polynomials (1.2) lead always to yet 
larger polynomials, and in the limit N + co, one has a ‘Fourier’ series which, if convergent, 
represents an almost periodic, and not necessarily periodic, solution of the problem. If 9%’c 
is simple and one soeks periodic solutions, then the process is convergent (Fife & <Joseph 
1969). 

Busse (1962) shows this when thermal properties vary. Krishnamurti (1968) shows it 
when there are heat sources. In a more restricted class of solutions, the same result is shown 
to hold by Palm & 0iann (1964), following earlier work of Palm (1960) and &gel& Stuart 
(1962) for the variable-viscosity problem, by Davis & Segel (1968) when there is a free 
surface and it is alIowed to  deflect, and by Scanlon & Sagel (1967) when surface tension 
drives the convection. 
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expected from either one of the possible branches in the range of temperature in 
which the derivative of viscosity with respect t o  temperature changes sign 
(see figure 2). 

I 

/ I \ I 

FIGURE 1. (a )  Stability sketch for the ‘BBnard’ problem (Ez+c6” = 0) in the bounded 
domain when gC is a simple eigenvalue. The conduction solution has E = 0. Possible 
steady convection is associated with curves % ( E )  shown in the figure as heavy lines. Solid 
lines show linearly stable solutions, and dashed lines give unstable solutions. In this 
problem there can be no subcritical convection (convection with 9 ( ~ )  < BC). Both 
‘upflow’ and ‘downflow’ are stable. 

Three-dimensional convection in fluid layers is unstable (Schluter et al. 1965) when 
(E2 + c2 = O),  so that a closed cell analogy of the bounded domain situation does not exist. 
Convection in two-dimensional rolls however is stable. In this case, the two solutions 
(upflow and downflow) can be obtained from one another by horizontal shifting of the 
co-ordinates. 

( b )  Stability sketch for generalized convection when gC(E, 5) is a simple eigenvalue and 
E 2 + c 2  > 0 is small. When 92 < W*, there is no steady convection for small E .  When 
W* < B < W,, there is steady linearly stable convection and linearly stable conduction. 
When W > Wc, conduction has exchanged its stability with the supercritical convective 
branch A ,  and this convection and that associated with the subcritical branch B are both 
linearly stable. 

This picture differs slightly from the one which is appropriate to convection of hexagonal 
form in fluid layers. In  the layer, Bc is not a simple eigenvalue, and roll eigenfunctions can 
(and do) destabilize the supercritical branch A .  For the hexagonal convection, the branch 
A would be shown as a dotted line. 

I n  any event, it is clear already from the analysis and experiment of Liang, 
Vidal & Acrivos (1969) that the view which was once accepted can no longer be 
asserted without qualification. These last-named authors show a photograph 
(figure 3 of their paper) of two stable forms of convection in a cylindrical con- 
tainer and give, also, a perturbation analysis which supports the notion that both 
branches are stable. 

I wish to demonstrate that the result of Liang et al. (1969) is true for all the 
generalized problems mentioned at  the start of this paper. The main hypothesis 
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which is required is the simplicity of the eigenvalue gC. In this respect our analysis 
has something in common with (and is partly inspired by) a recent analysis of 
Sattinger (1970), who shows that subcritical branches are unstable and super- 
critical branches are stable, a result which superficially disagrees with all those 
mentioned so far, but which actually describes the stability picture shown in 

FIGURE 2. Schematic sketch of convection of liquid sulphur in a bounded domain when 92, 
is simple. The curve aa is for a mean temperature of 153 "C. At this temperature the rate of 
change of viscosity with temperature vanishes, and the up and down motions are both 
stable. The curves bb and cc are on this or that side of 163 "C, and the stability situation is 
like that shown in figure 1. Consider an experiment in which the mean temperature is 
allowed to vary. Suppose the conditions of the experiment favour observation of sub- 
critical branches (A). Then one could observe a change in sign ( f B )  of the convection as the 
mean temperature is varied across 153 "C. The same remark holds relative to supercritical 
branches 0. Observing a does not exclude or establish the existence of stable convection 
on branches 0. 

figure 1 when 161 < ]€*I. The results which Sattinger obtains using the Leray- 
Schauder theory of the topological degree of a mapping are here obtained by 
direct perturbations (to order e). For larger amplitudes (O(e2))  the more direct 
analysis shows that the subcritical solutions which are unstable at order e can 
regain stability and do regain stability when c2 + c2 is small. 

The analysis also shows that the curvature of the viscosity function with 
respect t o  temperature, which is neglected when this relation (or the corre- 
sponding ones for other material functions) is linearized, enters in an important 
way in the formula for a2.%?(0, 5, g)/aez. 

The main requirement of the stability results given in 5 4 is the simplicity of gC. 
I was unable to show anything very general about the multiplicity o f g C  and was 
forced to treat instead (in Q 5) some very simple special cases of BBnard convec- 
tion (6 = 5 = 0). One example, the 'free surface box', is just a period cell, but the 
boundary conditions on it are to be regarded as prescribed. Everything can be 
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shown for this simple example. But in the course of developing the example, a 
solution was discovered for axisymmetric convection in a ring or disk when the 
top and bottom surfaces are free and the side wall is rigid. As far as I know, the 
solution is new. Some small interest accrues to the solution, because unlike the 
usual situation in which one must solve a sixth-order problem in the vertical (z)  
direction to satisfy conditions at the rigid boundary, here one must solve a some- 
what different sixth-order problem in the horizontal ( T )  direction for just the 
same reason. 

Section 6 deals with the following question: How can it come about that layers 
of large horizontal extent, in which 9c is simple, can act like infinite layers with 
regard to  stability of the two possible forms of steady convection? 

2. The branching problem and the linear stability problem for con- 
vection 

The starting point is the system of 0-B equations for disturbances u* and 
B* = T* - C?*(x3) of the conduction solution of the problem 

d?F*/dX: + 7H(z3) = 0. 

Here 7H(z3)  is the heat source distribution, 7 is the source of strength, x3 = 0 is the 
bottom of the container Q, and the temperature of the bottom and top is 

TZ = Tg + AT and Tg, 

respectively. The O-B equations are generalized to allow for a temperature- 
dependent kinematic viscosity of the form 

where S* is a constant, y is the viscosity function and v = v, at the bottom of the 
container (y(0) = 1). Then 

au*jat* + u* . Vu* = - Vp* + agt)*k + 2v0V. yd*, 
a8*/at* + u*. V8* + w*d!P/dx3 = i d @ .  

Here k is the unit vector in the direction of increasing x3 (against gravity), 
(d*)ii = +(ai$ + a,uT), w* is the x3 component of velocity and K, a, g are the 
thermal diffusivity, expansion coefficient and the magnitude of gravity, 
respectively. 

Before generalizing the problem further, it  will be convenient to introduce 
dimensionless variables [ t ,  x, u, 8, p ,  p] by dividing [t*, x*, u*, 8*,p*, C?*] by 
scale factors [l2/v0, I ,  vo/l,  ATg/B?,  v;/l2, AT].  Then 

au/at + U. VU = - Vp +90k+  2V. yd, ( 2 . 1 ~ )  

(2 . lb,c)  q a q a t  + u . v e )  + 9 w a Q d z  = he, div u = 0, 

where the conduction temperature (in dimensionless form) is 
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and y{t*;(T* - T 3 )  = 7{"90/% - 4 x 9  t)I}* ( 2 . 2 )  

Here the constant t*AT = 5 measures the rate of change of viscosity with 
temperature, 8 = v o / K  is the Prandtl number, g2 = agATl3/v0~ is the Rayleigh 
number, T(0)  = T;/AT and 

&(x) = d!F(O)/dz + 1 - (Z2/AT) ~ H ( . z ' )  d ~ '  (2.3) s: 
defines heat source parameter t. It is convenient to take x = 0 at the lowest point 
of the container a. Then in all the problems, the fluid has viscosity vo at the 
bottom. 

On the boundary a n  of a, we require that 

b ; Q =  [ 2Yd 

0 0 0 0  

and 

a,ol 

where S, and Xu are portions of as2 (with outward normal n), and h,(x) is a non- 
negative function defined on a a .  Equation (2 . lg)  is a free surface condition; i t  
requires that tangential tractions vanish on aQ - Xu. 

To shorten the writing it is useful to introduce a matrix notation. We first 
identify the non-linear part 7(6, 6,0) of the viscosity function 

y ( c g 0 / a  - 5& 5)) = 7('5 5; 6 )  + y( - m.Z, 5)). (2.41 

Hence, 7 = 0 when 8 = 0. Equations (2.1 a, b, c) may be written as 
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and (7; Q) is the 4 x 4 matrix defined by 

This matrix is not linear in the components of Q because r- depends on 8. We note 
that Qt = I t .  Q where It = diag ( 1 , 1 , 1 9 )  is a 4 x 4 diagonal matrix. 

The non-linear parts of (2.5b) are to be grouped together under the single term 

a[[, 5; QI = - Q , a ~ +  + a.  w, 5; 8); s}. ( 2 . 5 ~ )  

The boundary conditions may be written as 

(F+B).Q = OIj, .  (2.5a) 

Here N = (nZ, nu, n,, 0 )  is the normal vector (outward on a!2) defined for 4 
components, F is the linear operator defined by 

F . Q  = N.Q.N+[N.b;Q-N(N.(b;Q).N}] 

and B is a 4 x 4 diagonal matrix 

= diag (hw hu> hu, hT), 

where hu = 00 on S,, hT = 00 on ST and h, = 01 It may ease the work of the 
casual reader to replace ( 2 . 5 d )  with Q = OI,, as in ( 2 . 1 2 ~ ) .  

In  the work which follows, Q is a bounded domain in three dimensions. !2 could 
be a period cell defined by periodic disturbances in a fluid layer. Integration of 
any quantity f (x, y ,  z )  over !2 is indicated by the angle bracket (f). 

Steady convection is governed by the following set of equations : 

a . ( b ; Q ) + W F . Q + W [ ~ , g ; Q I  = ap, ( 2 . 6 ~ )  

8 . Q  = 0, ( F + B ) . Q  = Olaa. (2.6b, c )  

Let 6 be any vector which satisfies (2.6b, c). Then 

(6. (a. (b; Q) + 99.0)) = (Q . (a .  (b; 0) + 9FT.  6)). 
Here FT is the transpose of F. If FT = 9, then the linear problem for (2.6a, b, c ) ,  
i.e. the problem with 93 = 0, is formally self-adjoint. On the other hand, 

Hence, 6 gives the deviation of the linear problem from self-adjointness. The 
parameter 6 is a measure of the energy-producing non-linearity . The combination 
of these two effects allows a large number of possible generalizations of the 
Boussinesq equations. For example, if the thermal diffusivity were allowed to be 
temperature dependent, then a term like [would arise in the diffusion term and, 
of course, the conduction solution could not then be linear in z (hence 6). 
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It is necessary if W is not preassigned to assign a size to the non-linear solution 
and to seek the value 9 ( e )  as part of the non-linear solution. The size of the 
solution we seek is specified by the requirement that 

E’ = (Q. Qt). (2.6d) 

It is physically more natural to give 9 and find s but here, in the mathematical 
problem we go the other way. 

The system (2.6a, b, c, d )  has just two ( & e) solutions which branch off the 
conduction solution at the value 9 ( 0 )  = W(0,  E, C;) = ge. As has been mentioned 
these correspond to ‘upflow ’ or ‘downflow ’ at some given point in !2. The solution 
can be constructed as a Taylor series in e. To obtain results to order e2, it is 
necessary to retain the curvature of the viscosity function as well as its slope, but, 
without loss of generality, one can drop higher-order terms and use in 99 a 
tmncatedTaylor series. Let y(@%9/W - @) = y (x ) .  Then, from (2.4) one finds that 

where 7(E, c; 6 )  = (g‘t;e/g)Y‘ + ik”/a)’y’‘, 
yl = y1(E, Q 21, 7’’ = y”(E, Q 2) 

are derivatives with respect to x evaluated at 6 = 0, that is, x = - @ ( x ,  E ) .  
Then, 99 may be written as 

B[E, 5; 01 = T[E, C; Q, Ql + G[E, C; Q, Q, Ql, 
T[E,6; Q, Ql = - Q a. Q - (g/g) 0 - {6y’(E, 5, 2) 3; Q}, 

G(E, C; Q, Q, Ql = (g2C2/g2) a .  {e2&y”(E, C, 2) b; Q}. 
where 

and 

( 2 . 8 ~ )  

(2.86) 

To study the linear stability of the convective branches W(s, 6, c), Q(x, E ,  E, c), 

( 2 . 9 ~ )  

a .v  = 0, (F+B) .v  = ol,,, 1 = (vt.v), (2.96, c, d )  

one studies the spectral problem 

a.  (3; V) +9s. V -  (TI+. V +  %[[, g; Q; VI = an, 

where v is an infinitesimal disturbance of Q, and 

a[E, 5; Q; vl = T[(Q, V) + (v, Q)1+ GC(Q, Q, V) + (Q, V, Q) + (v, Q, Q)]. 
Here and below, the parameters 5 and 5 have been suppressed in the notation, but 
they are understood. The linear stability of the convection Q is determined by 
the sign of Re ((T) (Remeans real part and Re ((T) > 0 means instability). 

It proves convenient to set Q = eq and to speak of branching solutions of 

a. (3; 4) + &9-. q + m q ,  ql + @G[q, q, ql = ap (2.10 a) 
and 3 .q  = 0, (F+B) .q  = Olan, (q.qt) = 1. (2.106, c, d)  

The stability of the two convection solutions of (2.10) is governed by 

a.  (b ; v) + WF . v - (TI? . v + ET[( q, v) + (v, q)] 

+ w ( q ,  q, V) + (9, v, 4) + (v, q, S)I = ar. (2.11) 

It will simplify the writing a little and allow us to use some of the known results 
of analytic perturbation theory to replace the conditions (2.9 b, c, d )  with 

a .v  = 0, v = ol,,, (v.V+) = 1. (2.126, c, d )  
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When (2.12b) holds for v it also holds for q. The formal part of the analysis given 
below, however, could be as easily constructed relative to the natural boundary 
conditions ( 2 . 1 0 ~ ) .  It will also be evident that the results given hold for T and 
G of a general form and not just for the operators dehed  by (2.8a, b).  

The use of analytic perturbation theory for ( 2 . 1 0 ~ )  and (2.12b, c, d)  is justified 
in the papers of Fife &j Joseph (1969) and Fife (1970). The analyticity of the solu- 
tionv(e, 6, 6; x) and (T(G, [,c) in three parameters could be proved by the method of 
dominating majorants as in the first of the above-mentioned papers.t Alternately, 
one could follow Kirchgassner & Sorger (1968) (hereafter referred to as K & S) 
and apply analytic perturbation theory. 

3. The linear stability problem for conduction 

a(%, E, 6) of the problem 

and (2.12b, c, d). This problem governs the stability of the conduction solution. 
When W is small enaugh, Re ((T) < 0 for all eigenvalues of (3.1). The neutral 
limit is the value W s9fC([,[), for which the eigenvalue with the largest real 
part just vanishes Re (a(BC, 6,c) )  = 0. The main assumptions of our analysis 
concern the values of a(gC, &6). These are: 

(1) gC is an algebraically simple eigenvalue of (3.1) when a = 0 and (g, 5)  lies 

(2) A principle of exchange of stability (PES) holds in the sense that 

The assumption (2) is not necessary when E = 0, for then the problem (3.1) and 
(2.12b, c, d )  are self-adjoint (cf. (2.7)), and the entire spectrum Z(T(W,[, 6) is real. 
But even if & of (3.1) is not a self-adjoint operator, Zcr(g,E,g) is composed 
entirely of discrete eigenvalues of finite multiplicity (Yudovich 1965, K & S 
1968). Since gC is a simple eigenvalue, g(gC, 6,C) = 0 is also simple, and, by (2), 
a(gC,  E, 6) = 0 is the eigenvalue with the largest real part. 

Let 6 = 0 in ( 2 . 1 1 ~ ~ ) .  Then 9? can be preassigned and we seek eigenvalues 

(3.1) 4 . v  = a.(b;v)+92F.v-(TIt.v = a7T 

in a closed region I? containing (0,O). 

Im (a) = 0 when Re (a) 

.:( 
- a2 for some a2 > 0. 

When [ =# 0 we will need the adjoint problem 

a. (b ;  VA) + 9 S T .  VA - aIt . VA = a7T-4, (3.2) 

where vA like v satisfies (2.12b7 c, d). We will also use the following result, which 
extends only slightly results already obtained by K & S (1968): 

Here, we take analyticity in parameters as given. The interested reader can check the 
applicability of the theory of analytic operators of type A (Kato 1966, p. 376) to the 
problem (2.11) and (2.12b, c, d). It may help to note that when 6 = 0, a.(b;  v) = Av and 
the problem does not differ in any mathematical essentia, from the one considered by 
I( &, S (1968)._In particular our analogue of their operatorA would have the same domain 
and range as A and would be closable. These properties would be shared by our analogue if 
5 * 0 and E = 0. Then-3. (b ; v) differs from yAv by terms with first derivatives only. The 
relevant properties of A could be shown to persist even when 5 4 0 and e * 0 but then it 
would require an additional argument. For example, one could use analyticity of W and 
q in B and the uniform boundedness (in X) of the Taylor coefficients qc to establish the 
estimate of theorem (2.6) of Kato (1966, p. 377). 
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LEMMA 1. Every eigenvalue cr of (3.1) and (2.12 b, c, d )  satisJies the relation 

Let conditions A hold. Then when 92 = Bc, 

ag/ag > 0, 

and IT(%, .$ 5)  is real when 1%- Bcl i s  suficiently small. 

Proof of Lemma 1 

Since cr = 0 is simple when 9 = gC and (E ,  {)el-', analytic perturbation theory 
guarantees that cr(B?,c, 5)  is analytic in W ,  5 and { when 19-L3J is small and 
(5, 5)er. An identical consideration shows that the eigenvalue gC($, 5)  and 
eigenfunctions v and vA are analytic functions of (5,C) in I?. 

It follows from 2 analyticity that acrla9 and 8v/89 exist and must satisfy the 
problem obtained by differentiating (3.1) and (2.12 b, c, d )  with respect to 94'. !L'hus, 

A. (avIa9) = - 9. v + (a+qI+.  v (3.4) 

and av/ag must satisfy (2.12b, c, d ) .  The right side of (3.4) must be orthogonal to 
solutions of the homogeneous adjoint equation (3.2). Then using (3.1), we find 

(T 1 
a 9  a 9 (3.5) 
a r  
- ( v A . v t )  = ( V A . 2 F . V )  = - ( V A . V + ) - - ( v a . a ( b ;  v)) 

and (3.3) follows by integration. 
When CT = 0, since gC is simple 

- (VA. a(a; v)) = (pi: d" + ve . ve-4) + 0. (3.6) 

Otherwise ( v A  .9. v) = 0, contradicting simplicity. When 6 = 0, (3.1) and 
(2.12b, c, d )  form a self-adjoint problem and v = vA. Then, when 6 = 0, 

- ( V A . a ( b ; V ) )  > 0. 

Let 9 = gC. Then CT = 0 and 

in r. To check this we first recall that the scalar products in equation (2.7) are 
analytic when (6, 5)er and W = gc. Moreover, (vA.vt) =k 0 in I' since by the 
analyticity of cr, acr/a% is finite for 93 = gC and ([, [)El?. The inequality is clearly 
true when = 0. Since the scalar products in (3.7) cannot change sign as (6, 5) 
take on values in r, the inequality must also hold in I?. 

The conduction solution is linearly stable when 9 < 9,. When 9 = gC, the 
growth rate cr = 0 is a maximum (assuming PES), and since gC is simple, 
aa/aB? > 0 when 9 = gC. This shows that the conduction solution loses its 
stability when .GZ > 9ZC. 
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4. Perturbation analysis for convection 
Just as in the case of conduction, there is a ‘growth rate ’ curve 

for infinitesimal disturbances of convection. This curve passes through the point 
of maximum growth rate ((T = 0 when 9 = gC) for infinitesimal disturbances of 
the conduction solution. The growth rate a(.) appears as an eigenvalue of 
(2.11), and we study how it changes with E by analytic perturbations. The 
conditions A guarantee that Re ((T) = (T = 0 is the eigenvalue with the largest 
growth rate when9 = gC. The simplicity of (T = 0 means that only one eigenvalue 
branch ( T ( E )  can pass through the origin of the (a, 9 - gC) plane (figure 3) and in a 
small circle around the origin only this branch a(.) is available to destabilize 
convection. Originally stable eigenvalues with Re ( (~(0) )  < - az could perturb 
with e into unstable eigenvalues with Re { ( T ( E ) }  > 0 but not if E is sufficiently small 
(see figure 3). 

FIGURE 3. A schematic sketch of the growth rate curves for conduction (solid) and con- 
vection (dashed) lines. Sketched in the figure are what might be the appearance of the 
three largest eigenvalues for conduction a(B) and convection a(€). By PES the highest 
growth rate when L% = Bo is u = 0. Since BC is simple, a = 0 is simple and the growthrate 
u(B) for conduction and a(€) for convection both pass through the origin. The subcritical 
convection L%(.S)-&?~ < 0 is unstable when a(€) > 0, but when 6 > e*, ~ ( e )  < 0 and the 
subcritical convection is stable. As the bounded domain is stretched into a layer, the 
distance between successive eigenvalues becomes smaller (az -+ 0), and stable eigenvalues 
a(0) < -a2 can then cross to a(€) > 0 and become available to destabilize convection. 

Now we undertake the construction of the perturbation solution up to terms of 
order €2. It should be noted, from the way in which the convection problem (2.10) 
and its stability counterpart (2.11) were formed, that the solutions of these two 
problems necessarily coincide with the solutions of (2.6) and (2.9), respectively, 
up to  order 19. 
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The main result of this paper, theorem 1, follows from the formulas which are 
given in lemma 2, below. These formulas show how the Taylor coefficients 
(g,, r2) in the expansion 

of the largest eigenvalue of the problem ( 2 . 1 1 ~ )  and (2.12b, c, d )  governing the 
linear stability of steady convection are related to the Taylor coefficients (g1, 9,) 
in the series representation 

9 ( G  t, 6) = 9A6,  6) + %(6, 6 ) E  + 9 A t - 9  6 )s2  + W3) (4.2) 

of the dimensionless temperature contrast necessary to drive steady convection. 
Throughout 5 4weshalldesignate E derivatives evaluated at E = 0 with a number 

subscript, e.g. 2 q ,  = P q ( s ,  6, 5; x)/8~~1~=~. In the remainder of $4, 

Q = 4(% 6, 6; x)l,=, 

with an identical convention for v. 

LEMMA 2. Let conditions A hold. Then 

(qA.qt) = b2 > 0, 

g,b2+gl  = 0, 

and ~2b2+292+9?lq5  = 0, 

(4.3) 

(4.4) 

where q5 is the bounded function of (6, dejined by (4.19). 

Proof of Lemma 2 

Let 9 ='gC. Then E = 0 and u = 0. Compare (2.10) and (2.11) and, on taking 
account of the simplicity of gC, conclude that v = Pq. Similarly, v-d = P ' q A .  We 
may normalize vA and qA so that 

( q A . 3 . q )  = (vA.2F.v) = 1. 

This equation and the condition (v. vt) = (4. q') = 1 implies that P = p' = 5 1. 
The perturbation formulas to determine the Taylor coefficients to order €2 can 

be obtained from ( 2 . 1 0 ~ )  (2.11) and (2.12b,c,d) by direct differentiation with 
respect to e or by substitution into these equations of the series (4.1, 4.2), 

qh5,C;x) = 4 + q l E + q 2 E 2 + . . .  (4.5u) 

and v ( E , E , C ; x )  = V+V,E+V2€2+ .... (4 .5b )  

For the steady convection, one h d s  that 

9,s. q + a. (3; q,) + gC9. q1 + m, SI = apl, (4.6) 

(4.7) 

= (S1-S') = (Qz.qt+q,.qt+q,.q:). (4.8) 

g2s. q + 9,s. q, + a .  (3 ; q 2 )  + gC3. q, 

+T[(q,, 9) + (9, %)I+ G[q, q, sl = ap2. 

with 0 = a.gl = a.q2 = g,l,, = q2Ian 
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The governing equations for the stability problem (u and v) are found in the same 
way. Conditions (4.8) hold for v. Introducing 8 = v/P = q (but, of course, in 
general 8$ = vi/p + qi, i = 1,2) one finds the perturbation equations for the 
stability problem in the form 

and 
A,. q + a. (b .8,) + W c S .  6,+ 2T[q, q] = a;, (4.9) 

d2. q +&,. 8,+ a. (b;  P2) + W c ( K 8 2 )  

+ w 1 ,  q) + ( q , ~  + F,, 9) + (4, ql)i + 3 w ,  q, qi = a%. (4.10) 

.,His defined by (3.1) with W = Wc and cr = 0, A, = %’,F-u,I and 

A2 = 9t29-u2I+. 

Equation (4.6)-(4.10) have unique solutions if the inhomogeneous terms are 
orthogonal to the eigenfunction of the adjoint problem (3.2) with W = Bc(u = 0). 
Therefore, we find from (4.6) that 

9, (9”. 9 . 4 )  + (q” . T[q, Q1) = 0 ; 
from (4.9) that 

from (4.7) that 

(4.11) 

Wl(qA.~.q)-~,b2+Z(q“.T[q,q]) = 0; (4.12) 

B z ( q A .  s. q) + g1 < q-4.S. q,) 

+ (s”. TNe, 9) + (4, %)I)+ (4”. G[q, q, sl) = 0, (4.13) 
and from (4.10) that 

%‘2(qA.9.q)-~2b2+Wl(qA.S.8J-~1(qA.8~) 
+ (q” .T) + 3(q A * (3% 4, sl) = 0, (4.14) 

where T = TE(q1,q) + (9, a,) + (998,) + (819 s)l. 
Equations (4.11) and (4.12) combine to give equation (4.3) of the lemma. 
To proceed further we will need to show that 

9, = 2q,+W’,+, (4.15) 

where Wl+ tends to zero with &‘,. To prove (4.15) we form the equation 

a. ( b ;  [PI- + W c S .  [PI- 2qJ - W l S .  q- U1 It .  q = a(f i1-  213,) (4.16) 

by subtracting twice (4.6) from (4.9). Equation (4.16) has a unique solution 
V = 8, - 2q, which is solenoidal, satisfies the boundary conditions if and only if 

0 = (q~.(%’,9.q+a1q+)). 

This is just formula (4.3). It allows one to set u, = -Wl/b2 and shows that V 
scales with W,, i.e. V = Bl+ where + is the unique solenoidal solution of the 
problem 

and + = Olan. This proves (4.15). 

a. (b ;  +) +gC9. + - {s. q- q + p )  = ant 

Using (4.15) we fbd that 

(qA-Tf> = 3(qA.T[(qi,q)+(q,qi)If>+~i(q”.T[(q,~,)+(+r,q)I), (4.17) 
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which when combined with (4.13) gives 

(9” . .f) = - 3WZ(qA. 9. q) - 391(qA. 9. ql) 

- 3(qA. G) + W d q A -  TC(% 9) + ($3 411). (4.18) 

Equation (4.18) is now used to eliminate (qA. (.f + 3G)) from (4.14). This leads 
to (4.4) with 

q5 = (9”. { 3 3 . 9 1 -  9. +I - m q ,  9) + ($, 4 1  + (~1/81)W 

= (q”(3. q1 - 2 q W  - T“q, 4J) + (9, @I-  9 1  9 - 9 1  9 + / b 2 D  (4.19) 

proving lemma 2. 
The theorem proved below concerns the stability of the two forms of con- 

vection. The two forms correspond to  positive and negative values for E and give 
‘ upflow’ and ‘ downflow’ a t  some point in SZ. Stability here is in the sense of linear 
theory, g(e ,  &<)  > 0 means instability. Subcritical convection exists when 

o > 8-gC = % 1 ~ + W z ~ 2 + O ( ~ 3 ) .  (4.20) 

Hence when E is sufficiently sma11, eW1 < 0 means that the convection is sub- 
critical and eW1 > 0 means that the convection is supercritical. 

THEOREM 1.  Suppose that conditions A hold and that g2 + cz and c2 > 0 are 

(i) When [z++z = 0, the ‘upjlow’ and ‘downjow’ solutions are both stable 

(ii) Let [ z +  5 2  > 0. Then the supercritical solution is stable. There exists It‘*/ > 0 
and is stable when 

suficiently small. 

(Yudovich 1987 b). 

such that the subcritical solution is unstable when \el < 
161 > (€*I. Moreover, as c z + < z + O  

“* = - ~ , / ( 2 ~ , + 8 1 ~ ) + o ( E 2 , )  (4.21) 

and $? - gC is a local minimum at E = E*. 

Proof of Theorem 1 

Using lemma 2 we may rewrite (4.1) as 

C T ( E , ~ ,  <)b2 = -Wl~-{29z+Wlq5}e2+O(~3). (4.22) 

When $z++2  = 0, W ,  = 0, g2 > 0 (Yudovich 1987a, Fife & Joseph 1969). 
Hence, cr < 0 for small E .  This proves (i). To prove (ii) we first note that for the 
supercritical solution, ~9~ > 0 and cr < 0. The subcritical solution has E B ? ~  < 0 
and cr > 0 for small E ,  but cr = 0 when 

€2 = { - EB?~(I+  €4)  + 0(E3)}/29~. (4.23) 

Since 4 is a bounded quantity independent of e, W z  > 0 and eWl < 0, (4.23) may 
be solved for E = E* with Is*I2 > 0 when g1 is sufficiently small. In  particular, 
Wl+ 0 with c2+ cz and leads to the formula (4.21). From (4.22) and (4.23) we see 
that cr < 0 when 181 > and ~2%’~ < 0. The minimizing property mentioned in 
the last sentence of the theorem follows from comparison (4.21) and (4.20). 

It is worth noting that the cubic operator G[q, q, q] first enters the perturba- 
tion problem through (4.7), (4.10) for second derivatives. Such non-linearities 
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are characteristic for problems with temperature-dependent material coeficients 
(like viscosity). The inertial terms are quadratic and make no contribution to the 
operator G. Inspection of (4.22) shows that non-linearities of order higher than 
quadratic affect r~ only through W2 and terms of O(es) which do not enter our 
analysis. The effect of the cubic non-linearities cannot be ignored since by (4.13) 

9 2  - 92(G = 0 )  = (qA * (3% q, ql). 

In  the case of no heat sources = 0 and qA = q, we have, after integration by 
parts, that 

LZ2-W2(G = 0 )  = (q.G) = -(9c/=@c)2((82~y"d:d). (4.24) 

This formula shows how the second e derivative of W is strongly influenced by the 
curvature of the viscosity function (7"). Of course, (4.24) is small when 5 is small. 
But this is a consequence of the way in which 6 is said to appear in the viscosity 
law (2.2), and in general one should allow for curvature independent of slope. 
The effect of 9% is similar for the other material non-linearities, and it will be 
wiped out by the usual linear approximations which are used for the material 
non-linearities. 

To find linear stability for subcritical convection at  larger values of t2 and C2, 
we would needto consider O(e3). But for larger E the possibility that theperturba- 
tion will carry some eigenvalues from Re [cr(O)] < -a2 to Re [cr(e)] > 0 would 
also need to be excluded (see figure 3). 

The criterion (4.21) shares much with one obtained by Busse (1967) for the 
layer problem set on a class of almost periodic functions. His criterion differs 
from the one given here in that, in agreement with earlier work for the viscosity 
problem (Palm 1960, Segel & Stuart 1962, Palm & 0iann 1964), he finds that the 
supercritical branch ( A  in figure 1) is unstable. This result is also said, by Krish- 
namurti (1968), to hold for the heat source problem. 

The discrepancy between the results derived here and those which hold in the 
fluid layer can be traced to the degeneracy of the problem set in layers. In  the 
intersection of almost periodic functions and functions of the plan-form type 
where Busse's linearized treatment starts, the eigenvalue Wc is not simple but 
instead has an infinite multiplicity. 

When g2 is simple and 9 is nearby, one can destabilize the convection with 
only one disturbance mode, and this mode is very nearly proportional to the 
convection itself. But when Wc is a multiple eigenvalue, then all of the eigen- 
functions belonging to gC are available to destabilize the convection. This is why 
one can knock out supercritical hexagons (on A of figure 1)  with rolls but not with 
hexagons (Palm 1960, Segel & Stuart 1962, Busse 1962, Palm & Biann 1964). 

Of course it is possible to make 9tC a simple eigenvalue in the layer by requiring 
solutions to be invariant to certain translation and rotation groups (Yudovich 
1966). The simplicity here, however, has considerably less force than in the true 
bounded domain, since there is not the guarantee that nature will submit to  the 
symmetry restriction required of the mathematics. 

The question raised is an intriguing one since, even in layers of large horizontal 
extent, the eigenvalue Wc can be simple. Yet intuition suggests that such bounded 
layers should not differ sensibly from infinite layers. Indeed the perturbation 

It? F L M  47 
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analyses of Newell & Whitehead (1969) and Segel (1969) attempt to show how 
slow spatial and time variations can be introduced into the layer so as to allow one 
to ‘fit ’ the convection into a box. But the mechanics of this transition from the 
bounded domain to the infinite domain is imperfectly understood, and as argued 
in the next sections, must involve bifurcations from feeble convection rather than 
conduction. 

5. Remarks about BCnard convection in bounded domains 
It would be desirable to understand better the degree of pervasiveness of 

simplicity for in the bounded domain, but I do not known how to continue 
the discussion a t  a general level. 

Some things can, however, be shown for the Bhnard problem ([ = 5 = 0). 
Its relevance to the present discussion is this: if B?,, = g C ( O ,  0 , O )  is a simple eigen- 
value, then perturbation theory shows that g C ( O ,  c, 5) is simple when E2 + c2 is 
small. 

Consider the BBnard problem in a vertical cylinder Q of (dimensionless) 
height 1 and cross-section &’ of arbitrary shape. The vertical side wall is desig- 
nated by 9’; the unit outward normal to 9’ is m, and s is a unit tangent vector on 
curves of intersection of horizontal planes and the cylinder wall 9. 

It will lighten the work to restrict our attention to problems in which the 
vertical vorticity vanishes, 

k.curlu = a,v-a,u = 5 = 0. 

Our interest here is in the linear BBnard problem, that is problem (2.1) with 
y = 1, d5!”/dz = - 1, (u.V)u = (u.V)O = 0 and a/at = u. Then from this special- 
ized version of (2.1 a)  one finds that C T ~  = A{, and if either cor its normal derivative 
vanishes at the boundary, then u = - ( IVc12)/(1;2). It follows that no neutral or 
growing solution u 2 0 can have 5 + 0. (The possibility that 6 = constant could 
not be allowed unless the cylinder was in rigid rotation.) 

The value of 5 on a rigid top or bottom of the cylinder is zero. On a free surface 
top or bottom, the normal derivative of 5 vanishes. On the side wall 9, 

u = mu,+su,+kw, urn = Ols. (5.1) 

Noting that au,/as = OI,, one finds that k.curl(kw) = k.curl(mu,) = 0. 
Then using the relation as/as = - m/p where l /p is the curvature, we find that 

If c = 01, or acpm = 01, and the top and bottom are rigid or free surfaces, then 
every growing and neutral solution has 5 = 0 in the cylinder. 

If 6 = 01, in the cylinder, the velocity field is purely poloidal, and there exists 
a ‘potential’ x and an operator b such that 

(5.3) 

Most velocity fields in bounded domains will not allow fields with vanishing 
vertical vorticity. For example, one cannot ordinarily require four conditions on 

u = sx = vax/ax-kax. 
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the three components of velocity, namely that all three velocity components 
vanish on 9 and, at  the same time, require that 0 = auJam. For the general 
problem one must introduce a toroidal field (u = k x grad"), and the resulting 
problem (for x and Y) is not separable. 

A three-dimensional poloidal field can be found, however, in the free surface 
box. On this box the normal component of velocity and also (since the tangential 
stress is zero) the normal derivative of the tangential velocities vanish. One can 
satisfy (5.2) in the box because p = co, and the condition au,/am = 0 is not 'extra '. 

A2x - 936 = 0, (5.4~) Suppose 6 = 01,. Then 

A6-WA2X = 0, (5 .4b)  

where A, = a:x+aEv. These equations come from the pair for w and 6 which 
express ( 2 . l b )  and k.cur12 @.la) when a, = 0, y = 1, using w = - A , x .  On the 
free top and bottom of the box, we have 

(5.44 

On the free side wall with its normal in the direction z, the conditions u = 0 and 

x = a2x/az2 = o\*=o,J. 

and, similarly, in the direction y, 

Then the problem can be solved by solutions of the form 

where f, + A:fv = 0, atlam = 01,. 
Here, 9 is the rectangle of sides (Zx, lu) and 

where a and p are integers and the A, are ordered by size (A, < A,. . . ). One finds by 
introducing (5.5) into (5.4a, b )  that 

.%?At = (n2n2+A:)3. (5.7b) 

These are the required eigenvalues. 
9 2  is a simple eigenvalue of (5.4) provided A; is a simple eigenvalue of (5 .6)  and 

provided that for the pair (n, u )  there is not a second pair a, v" such that 92:,, = W&. 
Equation (5.7) shows that only one f, belongs to A; if l:/li is irrational. But one can 
always find rational lE/l: to satisfy the relation 

when the left side is given. These values make A; a multiple eigenvalue. 
18-2 
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The smallest of the eigenvalues 9; is associated with n2 = 1 and is given by 

This smallest eigenvalue is simple in most domains. The distance between this 
smallest value and the next largest value 

tends to zero as Zi and 1; become large (both the second and first term of (5 .8)  tend 
to  2714). On the other hand, when 1: + 1; is small, the distance between successive 
eigenvalues is very large. 

In  the free surface box the principal eigenfunction can be a roll with its axis 
along x(p = 0 )  or along y(a = 0)) or it can be a rectangle (p $: 0 $: a). For example, 
with E -+ 0 lE/l; = 2 + E ,  1; = 34, A, = p2(2 + €)I34 + a2/34, the principal eigenvalue 
is 

which corresponds to a = 2, p = 3.  Unlike the rigid box (Davis 19671, the 
principal eigenfunction in the free box does not show the same strong tendancy to 
align itself as a roll parallel to the short axis. 

The free surface cylinder which was studied by Liang, Vidal & Acrivos (1969) 
differs from the box in one important respect: it is not possible to have non- 
axisymmetric solutions with vanishing vertical vorticity. 

Consider the round cylinder with a free top and bottom and let 0 = O(,=o,,. 
Then, by using (5 .4~)  and ( 5 . 4 ~ )  b)  a bootstrap argument leads to the conclusion 
that all solutions of this problem have a x dependence of the form (5.5). Thus 
xv(r, 8) and dv(r, q5) must satisfy 

(A2 - V % ~ ) ~ X , ,  - B?Ov = 0, (15.94 

(A2 - ~~+)6’,, - B?AZx, = 0, (5 .9b)  

where 

and ( r ,  q5, z )  are cylindrical co-ordinates. 
When the side wall is free, the radial velocity and the two strain rates d,, and 

drc must all vanish at r = r,,. But in addition we have already assumed that the 
vertical vorticity (5 .2 )  must vanish at  ro, and this is compatible with dr+ = 01, 
only if uc = OlT0. It follows that three independent conditions hold at r = ro, 

ax,/a+ = axy/ar = a (A2xv)lar = oL01 (5.10(:,d,e) 

and three independent conditions plus a condition on 0, at ro overdetermine 
problem (5.9). Here, as in the rigid side wall problem mentioned earlier, one 
needs a toroidal as well as a poloidal field. 

On the other hand, if one’s attention is restricted to axisymmetric solutions, the 
condition u9 = 0 is an identity (since x,, = xv(r)), and it is not necessary to require 
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that axu/aq5 = 01,. Then if aB/ar = 0lra, one can satisfy the sixth-order problem 
arising from (5.9a, b )  and (5.10d, e )  with 

A2xu = - A ; x y ,  axular = O1ro, (5.11) 

that is, with xu = Jo(Aur), where the A, are the positive roots of d(J,,(A,r))/dr = Olta, 
and 

@A; = (A; + v27r2)3. (5.12) 

The A, are simple eigenvalues of (5.11) and the principal eigenvalue g2 of (5.12) 
is also simple. This is the linear part of the problem which was treated by Liang 
et al. (1969). There is as yet no published demonstration that the axisymmetric 
mode of convection gives the smallest value for W2.  

Explicit Bessel function solutions of the rigid side wall problem are easily 
obtained from (5.9) when the motion is axisymmetric. On the rigid side wall 
w = u, = 0 leads one to the conditions 

&XU = dXu/dr = 01,. (5.13a, b) 

Suppose that ae,/ar+he, = 01,,,, (5.14) 

where h is a positive constant. Here h = 0 gives the insulated side wall and 
h =m, the conducting side wall. Using (5.9a), we convert (5.14) into a condition 
on x .  

a 
- (A2 - ~ ~ n ' ) ~ x ~ + h ( A ~  - Y ~ T ~ ) ~ x ~  = Olr0. (5.13 c) 
ar 

The sixth-order equation 

(A2 - v2n2)3xV - 9PA2xV = 0 (5.15) 

is reduced to (5.12) by the Bessel functions Jo(Avr). Equation (5.12) is a cubic 
polynomial with real coefficients. It has three roots and the complex roots occur 
in conjugate pairs. Let A$, AE2 and AE3 be the three roots. The linear combination 

x u  = A,J,(41r) +A2Jo(~uzr)+A3J, , (~v3r)  

is the general solution of (5.15). It solves the problem, that is (5.13a, b,c) and 
(5.15), for the special values (eigenvalues) which appear as roots of the equation 
A( v, h, 9) = 0 where A is the determinant whose columns are 

ei Jo(44ro), 

and i = 1,2 ,3 .  In  figure 4 we have plotted some of the values 9 ( h ,  r,). It is 
striking how sensitive these values are to change in r,, even in disks when dia- 
meters are twice their height. In  all cases the smallest W has v = l. 

One can, in the same way but with six Bessel functions rather than three, 
resolve the problem of axisymmetric convection in an annular ring bounded by 
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rigid side walls but free at  the top and bottom. The experimental work of Gold- 
stein & Graham (1969) shows that such configurations can be achieved in the 
laboratory. 

To 

FIGURE 4. The critical Rayleigh number (9: = c ~ ~ A T Z ~ / V , I ( )  for the instability of the 
constant gradient conduction solution to axisymmetric convection in a disk with a free 
top and bottom and a rigid side wall. The value h = 0 is the insulating side wall. The value 
h = 00 is the conducting side wall. The arcs ab have one cell, bc has two cells. The co- 
ordinate r, gives the ratio of the radius of the disk to its height 1. 

6. Concluding remarks 
Feeble convection in most bounded domains is dominated by the consequences 

of the simplicity of Bc. Two ( ~f: 8) steady convective sohtions branch off con- 
duction at g = gC (see figure 1). One of these branches can have a subcritical 
arc with 9 < gc. Both branches of convection can be stable ifgC is simple. But if 
E2 + c2 is small, the subcritical branch is stable if I E ~  > I E* I > 0. Hence in bounded 
domains it is possible to realize both the 'up ' and ' down ' solutions when 9 > Bc 
(see Liang et uZ. (1969) for the analysis and experiment for convection in a round 
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cylinder), but only one of these solutions can be realized when W < 9Zc. Only this 
subcritical motion has a uniquely determined sign. 

In  fluid layers the supercritical branch of convection is unstable, and the 
mechanics of the transition from stability for the supercritical branch in the 
bounded domain to instability in the layer needs to be explained.? My ideas 
about this transition are speculative. Let us think of cylinder Q of cross-section 
&’ and height one. Let d be the minimum diameter of d. One can have cylinders 
L? of large horizontal extent (d)  which retain the property of simplicity for 
Wo = 9 c ( c  = 0,E = 0). (The reader can construct such an example for himself in 
the free surface box, cf. (5.8).) In  these layer-like domains, the supercritical 
branch of convection is stable when lel < 6(d). But it is likely that 6(d) -+ 0 with 
l/d. The reason that this is likely has to do with spectral crowding. 

By spectral crowding I mean nothing deeper than the elementary observation 
that as d is increased, the distance between successive eigenvalues decreases. This 
process is exhibited explicitly for the free surface box by (5.8), which gives the 
distance between the principal eigenvalue go of (5.4) and its nearest neighbour. 
This distance tends to zero as 1: and 1; tend to  infinity. Into any fixed interval 
L > 19 -Wol, we can crowd n 2 iV(Zz, 1,) eigenvalues of (5.4) and iV+ ot) as lx, 

A similar crowding of eigenvalues can be-demonstrated and is relevant when 
considering the spectral problem for the stability of conduction. Then in the ‘free 
surface ’box the ‘growth rates ’ a(9Z) are determined as eigenvalues of the problem 

1, -+ co. 

( 6 . 1 ~ )  

(6 . lb )  

and the boundary conditions (5.4). These appear as roots of the equation 

where A: is given by (5.7). To see the nature of the eigenvalues as the horizontal 
extent of the box is made large, we put 

5 = 3fi,p, ,(lX, l,, 2 2 )  = aB, P+co (for convenience). 

Then noting that by the argument leading to (5.8),  we have 

t In  physical problems which are set on bounded domains, it is sometimes more natural 
to think of a region of transition rather than of a well-defined boundary. Even when the 
boundary is well defined, it can happen that the boundary conditions are not of a nice 
kind or very easily posed. In  this regard, the inlet and outlet of a pipe or a finite fluid layer 
without confining side walls come to mind. Such problems are frequently best treated by 
extending them as mathematical problems onto infinite domains. The problem of extension 
then mirrors the chaotic conditions which can prevail at the ‘edges’ of the physical system. 
The mathematical difficulties which can arise in the extension, like loss of simplicity, 
discreteness of the spectrum and compactness of operators, are not consequences of bad 
mathematics but stem from the complexity of physics. The analysis of the extended 
problem could easily have more relovance than an analysis of a bounded domain problem 
with artificially ‘nice’ conditions set on edges. This may be the case, for example, in 
experiments like Graham’s (1933), in which the edges of the gas layer were not confined. 
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and find that when 9 = go, 

where n, a and ,u are integers and n and a2+,u2 are not zero. Zero is the largest 
value which is possible for 8, and it is taken on for the value n = 1, a = & and 
p = F. All the other eigenvalues 8.npa(lz, I,, go) are negative, the distance between 
5 = 0 and the next smallest eigenvalue tends to zero as 1, and I, are made large. 

Now in figure 3 we draw a circle of radius L around the origin. No matter how 
small this circle, it is possible by enlarging the box to inject into this circle an 
arbitrarily large number of eigenvalues 8 of (5.4) or ~(9,) of (6.1). It follows that 
the value u2 shown in figure 3 must tend to zero as the domain is enlarged. More- 
over, the nearest neighbours of the largest eigenvahe u = ~ ~ ~ ~ ( 8 ~ )  = 0 can now 
change sign in the B perturbation. In  this way eigenvalues U ( E )  which were nega- 
tive when B = 0 can become positive for ]el > 0 and lead to instability of the 
supercritical convection. 

A similar remark holds for perturbations of the spectrum which arise from the 
inevitable fluctuations which go with physical systems. If the eigenvalues of the 
ideal mathematical system are sufficiently dense near their principal values, such 
fluctuations will cause them to coalesce and change their order. In  this sense the 
crowding of the spectrum, even when gC is ‘ideally’ simple, can be an effective 
‘loss of simplicity’, and for it the infinite domain analysis may be most appro- 
priate. 

When the spectrum is separated, however, and gC is simple and e is small the 
convection is just a small perturbation of the eigenfunction belonging to gC. 
Then if 9 is very slowly changed, the only way in which new steady solutions 
could become available is by branching off feeble convection rather than off 
conduction. Viewed in this way, the appearance of hexagons in a cylinder (under 
steady exterior constraints) could only arise from bifurcation of convection. 
As e+O and B ? ( B ) - + ~ ~  only one form of infinitesimal convection would be 
available, and it is not hexagonal. 

The work was begun and essentially completed during a visit to Imperial 
College which was made possible by a grant from the Guggenheim foundation 
and the hospitality of the Department of Mathematics. I enjoyed the coopera- 
tion of P.Drazin in tracing the roots of the Oberbeck-Boussinesq equations. 
I am grateful to D. H. Sattinger and J. T. Stuart for useful discussion. I should also 
like to thank I. T. Hwang for carrying out the numerical calculation leading to  
figure 4. The work was partly supported by NSF grant GK1838. 
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